

HYDRAULIC TURBOMACHINES

Exercises 5 Cavitation

Settling level of a Francis turbine

In Figure 1, the installation of the turbine and setting level are shown. Consider the following input data:

$$C_{\overline{l}} = 0.86 \text{ m} \cdot \text{s}^{-1}$$

 $Z_{\overline{B}} = 175.6 \text{ m}$
 $p_{atm} = 1.0 \text{ bar}$
 $p_{v} = 2343 \text{ Pa}$

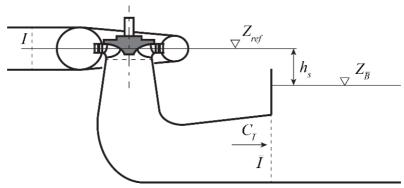


Figure 1. Machine setting level

1) Express the Net Positive Suction Specific Energy (NPSE) by gH_T , Z_{ref} , and a saturated pressure p_v .

$$NPSE = gH_{\overline{I}} - \frac{p_{\nu}}{\rho} - gZ_{ref}$$

2) Express Thoma number σ defined by $\frac{NPSE}{E}$, using the setting level $h_s = Z_{ref} - Z_{\overline{B}}$, the flow velocity $C_{\overline{I}}$, the saturated pressure p_v and the atmosphere pressure p_a . Assume that the draft tube outlet is considered as a water outflow $(K_v = 1)$.

$$\sigma = \frac{NPSE}{E} = \frac{\frac{p_{atm}}{\rho} + gZ_{\overline{B}} + \frac{C_{\overline{I}}^{2}}{2} - \frac{p_{v}}{\rho} - gZ_{ref}}{E} = \frac{\frac{p_{atm} - p_{v}}{\rho} - gh_{s} + \frac{C_{\overline{I}}^{2}}{2}}{E}$$

3) Compute Z_{ref} the setting elevation of the turbine units, to achieve a net positive suction head (NPSH) of 13.4 m.

The following condition needs to be verified:

$$NPSH = H_{\overline{I}} - \frac{p_{\nu}}{g \rho} - Z_{ref} = 13.4 \text{m}$$

The specific energy at outlet section of the machine is:

$$gH_{\bar{I}} = gZ_{\bar{I}} + \frac{p_{\bar{I}}}{\rho} + \frac{C_{\bar{I}}^2}{2} = gZ_{\bar{B}} + \frac{p_{atm}}{\rho} + \frac{C_{\bar{I}}^2}{2}$$

with
$$\frac{p_{\overline{I}}}{g\rho} = \frac{p_{atm}}{g\rho} + Z_{\overline{B}} - Z_{\overline{I}}$$
 (column of water in \overline{I})

Note that the kinetic energy corresponds to the specific energy losses due to the water outflow $(K_v = 1)$ at the draft tube outlet.

$$Z_{ref} = Z_{\overline{B}} + \frac{p_{atm} - p_{v}}{g\rho} + \frac{C_{\overline{I}}^{2}}{2g} - NPSH = 172.2$$

12.11.2023 EPFL Page 2/2